Задача 1
Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число было меньше предыдущего. Какую максимальную сумму могут иметь выбранные числа?
В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.
Задача 2
Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
Задача 3
Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. Некоторые клетки на поле окружены границами, в эти клетки роботу заходить нельзя.
В начальный момент запас энергии робота составляет 3000 единиц. Проходя через каждую клетку, робот расходует энергию, при этом расход равен числу, записанному в клетке. В клетках с выделенным фоном находятся зарядные станции. При прохождении через эти клетки робот не расходует, а пополняет запас энергии. Сумма пополнения равна числу, записанному в этой клетке.
Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем — минимальное.
Исходные данные записаны в электронной таблице. Границы отмечены утолщёнными линиями.
Задание для самостоятельного выполнения
Квадрат разлинован на N × N клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо и вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота. Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю.
В ответе укажите два числа сначала максимальную сумму, затем минимальную. Исходные данные представляют собой электронную таблицу размером N × N, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщенными линиями.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для данных из примера ответ 34 22.